Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540756

RESUMO

Sodin 5 is a type 1 ribosome-inactivating protein isolated from the seeds of Salsola soda L., an edible halophytic plant that is widespread in southern Europe, close to the coast. This plant, known as 'agretti', is under consideration as a new potential crop on saline soils. Considering a possible defence role of sodin 5 in the plant, we report here its antifungal activity against different halophilic and halotolerant fungi. Our results show that sodin 5 at a concentration of 40 µg/mL (1.4 µM) was able to inhibit the growth of the fungi Trimmatostromma salinum (35.3%), Candida parapsilosis (24.4%), Rhodotorula mucilaginosa (18.2%), Aspergillus flavus (12.2%), and Aureobasidium melanogenum (9.1%). The inhibition observed after 72 h was concentration-dependent. On the other hand, very slight growth inhibition was observed in the fungus Hortaea werneckii (4.2%), which commonly inhabits salterns. In addition, sodin 5 showed a cytotoxic effect on the Sf9 insect cell line, decreasing the survival of these cells to 63% at 1.0 µg/mL (34.5 nM). Structural analysis of sodin 5 revealed that its N-terminal amino acid residue is blocked. Using mass spectrometry, sodin 5 was identified as a homologous to type 1 polynucleotide:adenosine glycosylases, commonly known as ribosome-inactivating proteins from the Amaranthaceae family. Twenty-three percent of its primary structure was determined, including the catalytic site.


Assuntos
Salsola , Saporinas/metabolismo , Salsola/metabolismo , Fungos/metabolismo , Antifúngicos/metabolismo , Sementes/química , Proteínas de Plantas/química
2.
Toxins (Basel) ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36006228

RESUMO

Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.


Assuntos
Salsola , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Coelhos , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1 , Ribossomos/metabolismo , Salsola/metabolismo
3.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672654

RESUMO

Salsola collina Pall has a long history of being used as a traditional medicine to treat hypertension, headache, insomnia, constipation and vertigo. However, only a few biologically active substances have been identified from S. collina. Here, the shoots and roots of S. collina, namely L-Sc and R-Sc, were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 637 putative metabolites were identified and these metabolites were mainly classified into ten different categories. Correlation analysis, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis of metabolites showed that the L-Sc samples could be clearly separated from the R-Sc samples. Differential accumulated metabolite analysis revealed that most of differential primary metabolites were significantly lower in the L-Sc than in the R-Sc. Conversely, the major differential secondary metabolites had higher levels in the L-Sc than in the R-Sc. Further analysis indicated that the flavonoids were the major putative antioxidant components and most of putative antioxidant components exhibited higher relative concentrations in the L-Sc than the R-Sc. These results improve our understanding of metabolite accumulation and provide a reference for the study of medicinal value in S. collina.


Assuntos
Flavonoides/metabolismo , Metabolômica , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Salsola/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Raízes de Plantas/química , Brotos de Planta/química , Análise de Componente Principal , Salsola/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
J Sci Food Agric ; 100(2): 794-802, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31612484

RESUMO

BACKGROUND: Low-sodium sausages were manufactured using sodium substitution and biopolymer encapsulation. A diet comprising 10% treatment sausages (six treatment groups: C (100% NaCl), T1 (55% sodium substitute + 45% saltwort salt), T2 (55% sodium substitute + 45% saltwort salt with chitosan), T3 (55% sodium substitute + 45% saltwort salt with cellulose), T4 (55% sodium substitute + 45% saltwort salt with dextrin), and T5 (55% sodium substitute + 45% saltwort salt with pectin)) was added to a 90% commercial mouse diet for 4 weeks. RESULTS: Subacute toxicity, hematology, liver function, and organ weight tests in low-sodium sausage groups showed results similar to those of the control group, and all toxicity test levels were within normal ranges. CONCLUSIONS: All low-sodium sausage types tested are suggested to be safe in terms of subacute toxicity. Moreover, low-sodium sausages can be manufactured by biopolymer encapsulation of saltwort using pectin, chitosan, cellulose, and dextrin without toxicity. © 2019 Society of Chemical Industry.


Assuntos
Biopolímeros/análise , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Salsola/química , Sódio/análise , Animais , Biopolímeros/metabolismo , Biopolímeros/toxicidade , Celulose/análise , Celulose/metabolismo , Celulose/toxicidade , Quitosana/análise , Quitosana/metabolismo , Quitosana/toxicidade , Feminino , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Manipulação de Alimentos/instrumentação , Masculino , Produtos da Carne/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Salsola/metabolismo , Salsola/toxicidade , Sódio/metabolismo , Sódio/toxicidade , Suínos
5.
Plant Physiol ; 175(1): 272-289, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743765

RESUMO

Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.


Assuntos
Amaranthaceae/metabolismo , Chenopodiaceae/metabolismo , Cisteína/metabolismo , Proteínas de Plantas/metabolismo , Salsola/metabolismo , Enxofre/metabolismo , Amaranthaceae/efeitos dos fármacos , Biomassa , Chenopodiaceae/efeitos dos fármacos , Cisteína Sintase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Salinidade , Salsola/efeitos dos fármacos , Plantas Tolerantes a Sal , Sódio/farmacologia , Sulfatos/farmacologia , Compostos de Sulfidrila/metabolismo
6.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1067-1076, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502749

RESUMO

A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts.


Assuntos
Antígenos de Plantas/metabolismo , Glicosídeos/metabolismo , Imunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Salsola/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Sequência de Bases , Clonagem Molecular/métodos , Reações Cruzadas/fisiologia , Glicosídeos/química , Oleaceae/química , Oleaceae/metabolismo , Proteínas de Plantas/química , Pólen/química , Ligação Proteica/fisiologia , Proteômica/métodos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salsola/química , Alinhamento de Sequência
7.
J Exp Bot ; 68(2): 161-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660482

RESUMO

Some species of Salsoleae (Chenopodiaceae) convert from C3 photosynthesis during the seedling stage to the C4 pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C4 syndrome from the C3 condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C4 enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C3 phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C4 NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.


Assuntos
Cotilédone/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Salsola/metabolismo , Isótopos de Carbono/metabolismo , Cotilédone/anatomia & histologia , Perfilação da Expressão Gênica , Folhas de Planta/anatomia & histologia , Salsola/anatomia & histologia , Salsola/crescimento & desenvolvimento , Transcriptoma
8.
Bioresour Technol ; 220: 378-383, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595703

RESUMO

Salsola collina Pall. as a typical euhalophyte was slowly pyrolyzed at 300°C, 500°C and 700°C in a fixed-bed system. The physiochemical properties of syngas, bio-oil and biochar were assayed to understand the impact of pyrolysis temperature on these parameters and then to evaluate their potential values. The results showed that syngas yield (26.07-46.37%) increased with pyrolysis temperature, while biochar yield (47.54-26.83%) decreased. Bio-oil yield (26-30%) was hardly affected by pyrolysis temperature. Both syngas and bio-oil had poor values as direct fuel. The euhalophyte-derived biochar had higher aromaticity (H/C 0.16-0.85, O/C 0.06-0.26), higher cation exchange capacity (198.82-435.74cmolkg(-1)), and higher K(+) (59.35-80.42gkg(-1)) and Na(+) (37.56-53.26gkg(-1)) compared with glycophyte-derived biochars. Our findings imply that halophyte biochar may be more suitable to use as a soil conditioner, which is worthy of further study.


Assuntos
Biocombustíveis , Carvão Vegetal , Salsola/metabolismo , Adsorção , Reatores Biológicos , Salsola/química , Solo/química , Temperatura
9.
J Environ Manage ; 157: 96-102, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25897503

RESUMO

Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC âˆ¼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC âˆ¼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil.


Assuntos
Boro/metabolismo , Salsola/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo , Agricultura , California , Humanos , Plantas Tolerantes a Sal/metabolismo
10.
Oecologia ; 178(2): 317-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25783489

RESUMO

We investigated the possible use of dew as a water source for three desert plant species native to the Negev Desert: an annual Salsola inermis, and two perennials Artemisia sieberi and Haloxylon scoparium, with different rooting depths of 15, 30 and 90 cm, respectively. We quantified dew-water inputs and used stable isotope analyses to determine the proportion of dew as compared to the proportion of soil water each species utilized. Dew was isotopically enriched (δD values ranged from -25 to 5 ‰), relative to rainfall with δD values that ranged from -40 to -20 ‰ and relative to soil water with δD values that ranged from -65 to -35 ‰. Using a two-source isotope mixing model, we found that S. inermis, A. sieberi and H. scoparium used, on average, 56, 63 and 46 % of their water from dewfall, respectively. Our results suggest that dew-water utilization by Negev Desert plants is highly significant ecologically and thus may be more common than previously thought. In light of future predicted climate change, it may be increasingly important for plants of the Negev Desert to make use of dew as a water resource as it may play an important role in their ability to cope with the associated hydrological constraints predicted for the Negev region.


Assuntos
Amaranthaceae/metabolismo , Artemisia/metabolismo , Clima Desértico , Salsola/metabolismo , Água/análise , Água/metabolismo , Amaranthaceae/química , Artemisia/química , Mudança Climática , Deutério/análise , Isótopos de Oxigênio/análise , Salsola/química , Solo/química
11.
Ecotoxicol Environ Saf ; 110: 21-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193881

RESUMO

Salsola crassa (Amaranthaceae) is an annual halophytic species and naturally grows in arid soils that are toxic to most plants. In order to study the effects of salinity on their antioxidant system and to determine the tolerance range against salt stress, S. crassa seeds were grown with different concentrations of NaCl (0, 250, 500, 750, 1000, 1250 and 1500mM) for short (15d) and long-term (30d). Results showed that growth (RGR), water content (RWC) and osmotic potential (ΨΠ) decreased and, proline content (Pro) increased at prolonged salt treatment. Unlike K(+) and Ca(2+) contents, S. crassa highly accumulated Na(+) and Cl(-) contents. Chlorophyll fluorescence (Fv/Fm) only decreased in response to 1500mM NaCl at 30d. No salt stimulation of superoxide anion radical (O2(•-)) content was observed in plants treated with the range of 0-500mM NaCl during the experimental period. NaCl increased superoxide dismutase (SOD) activity depending on intensities of Mn-SOD and Fe-SOD isozymes except in 1500mM NaCl-treated plants at 30d. In contrast to catalase (CAT), peroxidase (POX) activity increased throughout the experiment. Also, salinity caused an increase in glutathione reductase (GR) and glutathione peroxidase (GPX) and decreased in ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) at 15d. Both total ascorbate (tAsA) and glutathione (tGlut) contents significantly increased in treated plants with 1000-1500mM NaCl at 15d. After 0-1000mM NaCl stress, H2O2 and TBARS contents were similar to control groups at 15d, which were consistent with the increased antioxidant activity (POX, GR and GPX). However, H2O2 content was more pronounced at 30d. Therefore, S. crassa exhibited inductions in lipid peroxidation (TBARS content) in response to extreme salt concentrations. These results suggest that S. crassa is tolerant to salt-induced damage at short-term treatments as well as extreme salt concentrations.


Assuntos
Antioxidantes/metabolismo , Salsola/metabolismo , Plantas Tolerantes a Sal/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Prolina/metabolismo , Salinidade , Salsola/efeitos dos fármacos , Salsola/enzimologia , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Cloreto de Sódio/toxicidade , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
12.
J Hazard Mater ; 205-206: 131-8, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22257568

RESUMO

Lead (Pb) has great toxicity to human beings and other livings. Although there are varied ways to rehabilitate the Pb contaminated area, phytoremediation of Pb pollution in arid lands is still a difficult task, it is therefore urgent to find and identify Pb tolerant plants in arid areas. The physiological responses and tolerance mechanisms to Pb stress (expressed as the Pb concentration, e.g., 0, 50, 150, 300, 600, 800, 1000 mg/L) were investigated for the xerophils Salsola passerina Bunge and Chenopodium album L. Results indicated that S. passerina exhibited higher Pb tolerance than Ch. album in terms of the seed germination rate, bio-activities of SOD and POD, and lower MDA production. There were two ways for S. passerina to reduce Pb toxicity in organism level, e.g., cell wall precipitation and state transfer of free Pb into anchorage. These findings demonstrate that S. passerina is a Pb tolerant species and may have potential application in phytoremediation of Pb contaminated arid lands.


Assuntos
Chenopodium album/efeitos dos fármacos , Chumbo/toxicidade , Salsola/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Chenopodium album/crescimento & desenvolvimento , Chenopodium album/metabolismo , Germinação/efeitos dos fármacos , Chumbo/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Salsola/crescimento & desenvolvimento , Salsola/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo
13.
Magn Reson Chem ; 47(3): 263-5, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19009575

RESUMO

Chromatographic analysis of the alcoholic extract from Salsola imbricata yielded two new secondary metabolites, salisomide (1) and salisoflavan (2). Their structures were established with the help of spectroscopic techniques including COSY, HMQC and HMBC NMR experiments.


Assuntos
Amidas/química , Flavonoides/química , Fenóis/química , Salsola/química , Amidas/metabolismo , Flavonoides/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Fenóis/metabolismo , Salsola/metabolismo
14.
C R Biol ; 331(11): 865-73, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18940702

RESUMO

Halophyte ability to withstand salt-triggered oxidative stress is governed by multiple biochemical mechanisms that facilitate retention and/or acquisition of water, protect chloroplast functioning, and maintain ion homeostasis. Most essential traits include the synthesis of osmolytes, specific proteins, and antioxidant molecules. This might explain the utilization of some halophytes as traditional medicinal and dietary plants. The present study aimed at assessing the phenolic content and antioxidant activities of some Tunisian halophytes (Cakile maritima, Limoniastrum monopetalum, Mesembryanthemum crystallinum, M. edule, Salsola kali, and Tamarix gallica), depending on biological (species, organ and developmental stage), environmental, and technical (extraction solvent) factors. The total polyphenol contents and antioxidant activities (DPPH and superoxide radicals scavenging activities, and iron chelating and reducing powers) were strongly affected by the above-cited factors. Such variability might be of great importance in terms of valorising these halophytes as a source of naturally secondary metabolites, and the methods for phenolic and antioxidant production.


Assuntos
Antioxidantes/metabolismo , Fenóis/metabolismo , Plantas Tolerantes a Sal/fisiologia , Brassicaceae/metabolismo , Ecossistema , Meio Ambiente , Flavonoides/metabolismo , Flores/metabolismo , Homeostase , Ferro/metabolismo , Mesembryanthemum/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Caules de Planta/metabolismo , Plumbaginaceae/metabolismo , Polifenóis , Salsola/metabolismo , Plantas Tolerantes a Sal/metabolismo , Especificidade da Espécie , Tunísia
15.
Bioresour Technol ; 99(17): 8441-4, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18413283

RESUMO

Although frequently less toxic than many colorless effluents, colored effluents are generally considered by the public as an indicator of pollution. The present investigation aimed at identifying the effectiveness of a local desert plant characteristic of Southwest Algeria and known as Salsolavermiculata, which was pyrolyzed and treated chemically with a 50% zinc chloride solution, to remove methylene blue and iodine. The natural plant adsorption capacities were respectively 23mg/g and 272mg/g for methylene blue and iodine. Corresponding results for the pyrolyzed plant uptakes were 53mg/g and 951mg/g, while those for the pyrolyzed plant, chemically treated and activated at 650 degrees C, were 130mg/g and 1178mg/g, respectively. In comparison, the standard Merck activated carbon capacities were 200mg/g for methylene blue and 950mg/g for iodine. Consequently, this low-cost local plant may also prove useful for the removal of large organic molecules as well as potential inorganic contaminants.


Assuntos
Clima Desértico , Iodo/isolamento & purificação , Azul de Metileno/isolamento & purificação , Salsola/metabolismo , Adsorção/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Carbono/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Cinética , Propriedades de Superfície , Temperatura , Fatores de Tempo
16.
Environ Toxicol Chem ; 26(5): 1033-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17521152

RESUMO

Tumbleweed plants (Salsola kali L.) grown in agar and liquid media demonstrated a high capacity to accumulate Pb in their different parts without affecting biomass. Whereas shoot elongation and biomass were not significantly affected by high tissue concentrations of Pb, root growth was significantly affected relative to controls. Roots, stems, and leaves demonstrated Pb concentrations of 31,000, 5,500, and 2,100 mg/kg dry weight, respectively, when plants were grown in the agar medium containing 80 mg Pb/L. Application of ethylenediaminetetraacetic acid (EDTA) to Pb-contaminated media dramatically reduced the total acquisition of Pb from both types of media. However, EDTA significantly increased the translocation of Pb from roots to the aerial parts, as evidenced by a multifold increase (23- and 155-fold for agar and liquid media, respectively) in the translocation concentration factor. The concentration of the antioxidant thiol compounds significantly increased (p < 0.05) in plants grown with uncomplexed Pb treatments relative to control plants. Scanning-electron microscopy and electron dispersive x-ray spectroscopic evaluation of leaf samples demonstrated an interesting pattern of Pb translocation in the presence or absence of EDTA. Large Pb crystals were found across the leaf tissues (palisade, spongy parenchyma, and conducting tissues) in the absence of EDTA. Lead nanoparticles also were seen when plants were grown in Pb-EDTA solution. Ultramicroscopic features of tumbleweed provide clear evidence for the unrestricted conduction of Pb from the root to the aerial parts, and this property makes the plant a good candidate for phytoremediation.


Assuntos
Ácido Edético/farmacologia , Chumbo/farmacocinética , Salsola/efeitos dos fármacos , Poluentes do Solo/metabolismo , Antioxidantes/farmacologia , Biodegradação Ambiental , Biomassa , Quelantes/metabolismo , Chumbo/toxicidade , Microscopia Eletrônica de Varredura , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Salsola/crescimento & desenvolvimento , Salsola/metabolismo , Poluentes do Solo/toxicidade , Análise Espectral , Compostos de Sulfidrila/farmacologia
17.
Plant Physiol Biochem ; 43(5): 491-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15914015

RESUMO

Tumbleweed (Salsola kali) is a desert plant species that has shown to be a potential Cd hyperaccumulator. In this study, the production of low-molecular weight thiols (LMWT) as a response to cadmium stress was determined in hydroponically grown seedlings exposed to 0, 45, 89, and 178 microM Cd(2+). The treatment of 89 microM Cd(2+) was tested alone and supplemented with an equimolar concentration of ethylenediaminetetraacetic acid (EDTA) to determine the effect of this chelating agent on Cd uptake and thiols production. After 6 days of growth, the Cd concentration in plant tissues was determined by using inductively coupled plasma/optical emission spectroscopy (ICP/OES). Results indicated that Cd uptake by plants was concentration-dependent. Plants treated with 178 microM Cd(2+), had 10+/-0.62, 9.7+/-1.4, and 4.3+/-0.83 mmol Cd kg(-1) dry tissue in roots, stems, and leaves, respectively. The production of thiols was dependent on Cd concentration in tissues. According to the stoichiometry performed, plants treated with Cd concentrations up to 178 muM produced 0.131+/-0.02, and 0.087+/-0.012 mmol SH per mmol Cd present in roots and stems. In leaves, the production of thiols decreased at the highest Cd concentration tested. Thus, up to 89 microM Cd in the media, 0.528+/-0.004 mmol SH per mmol Cd in leaf tissues were produced. EDTA equimolar to Cd reduced both Cd uptake and thiols production. Catalase activity (CAT) (EC 1.11.1.6) was significantly depressed at the lowest Cd concentration. None of the conditions tested affected biomass or plant elongation.


Assuntos
Cádmio/metabolismo , Salsola/metabolismo , Compostos de Sulfidrila/metabolismo , Cádmio/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Germinação/efeitos dos fármacos , Modelos Biológicos , Peso Molecular , Potássio/metabolismo , Salsola/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Compostos de Sulfidrila/química
18.
Chemosphere ; 55(9): 1159-68, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15081756

RESUMO

Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis.


Assuntos
Cádmio/farmacocinética , Cádmio/toxicidade , Salsola/efeitos dos fármacos , Salsola/metabolismo , Análise de Variância , Cádmio/metabolismo , Clima Desértico , Glutationa , Metaloproteínas , Oxigênio/metabolismo , Fitoquelatinas , Salsola/crescimento & desenvolvimento , Análise Espectral , Síncrotrons , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...